Robustness of N₂H⁺ as tracer of the CO snowline

Merel van 't Hoff¹, Catherine Walsh^{1,2}, Mihkel Kama^{1,3}, Stefano Facchini⁴ & Ewine van Dishoeck^{1,4}

¹Leiden Observatory, Leiden University, The Netherlands; vthoff@strw.leidenuniv.nl ² School of Physics and Astronomy, University of Leeds, UK ³ Institute of Astronomy, Cambridge, UK ⁴ MPE, Garching, Germany

Snowline: midplane radius in a protoplanetary disk beyond which a molecular species freezes out onto dust grains.

Snowlines are important for planet formation and composition.

ALMA observations of the TW Hya disk

Qi et al. 2013

N₂H⁺ is assumed to be a good tracer of the CO snowline

The CO snowline is difficult to observe directly, but can be traced with $N_2H^+[1,2]$, because N_2H^+ can only be abundant when CO is frozen out:

> $N_2 + H_3^+ \rightarrow N_2 H^+ + H_2$ $CO + H_3^+ \rightarrow HCO^+ + H_2$ $N_2H^+ + CO \rightarrow HCO^+ + N_2$

Assess robustness of N₂H⁺ using a small chemical network

 N_2H^+ does not peak at the CO snowline; the reduction of gas-phase CO at the snowline is not sufficient for N₂H⁺ to reach an appreciable abundance.

This incorporates only the essential processes and species [3], and a physical model for TW Hya [4].

Vary CO and N₂ abundances, and determine the position of the N₂H⁺ column density peak.

Simulate N₂H⁺ J = 4-3 emission with the radiative transfer code LIME [5].

References

0.10

van 't Hoff, M.L.R., Walsh, C., Kama, M., Facchini, S., & van Dishoeck, E.F., A&A, accepted.

[1] Qi, C., Öberg, K.I., Wilner, D.J. et al. 2013, Science, 341, 630. [2] Qi, C., Öberg, K.I., Andrews, S.M. et al. 2015, ApJ, 813, 128. **[3]** Aikawa, Y., Furuya, K., Nomura, H., & Qi, C. 2015, ApJ, 807, 120. [4] Kama, M., Bruderer, S., van Dishoeck, E.F. et al. 2016, A&A, 592, A83. [5] Brinch, C. & Hogerheijde, M.R. 2010, A&A, 523, A25. [6] Schwartz, K.R., Bergin, E.A., Cleeves, L.I., et al. 2016, ApJ, 823, 91.

The relation between N₂H⁺ and CO is more complicated than just CO freeze-out

Therefore, chemical modeling, as outlined in our work, rather than column density fitting, is necessary to translate $N_{2}H^{+}$ emission into a CO snowline location.

Observed emission peak CO snowline: expected location of N₂H⁺ peak

The N₂H⁺ column density peaks at least 5 AU outside of the CO snowline.

N₂H⁺ formed above the CO snow surface shifts the emission outward with respect to the CO snowline.